Permutation Polynomial - Schur's Conjecture

Schur's Conjecture

Let K be an algebraic number field with R the ring of integers. The term "Schur's conjecture" refers to the assertion that, if a polynomial f defined over K is a permutation polynomial on R/P for infinitely many prime ideals P, then f is the composition of Dickson polynomials, degree-one polynomials, and polynomials of the form xk. In fact, Schur did not make any conjecture in this direction. The notion that he did is due to Fried, who gave a flawed proof of a false version of the result. Correct proofs have been given by Turnwald and Müller.

Read more about this topic:  Permutation Polynomial

Famous quotes containing the word conjecture:

    There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)