Schur's Conjecture
Let K be an algebraic number field with R the ring of integers. The term "Schur's conjecture" refers to the assertion that, if a polynomial f defined over K is a permutation polynomial on R/P for infinitely many prime ideals P, then f is the composition of Dickson polynomials, degree-one polynomials, and polynomials of the form xk. In fact, Schur did not make any conjecture in this direction. The notion that he did is due to Fried, who gave a flawed proof of a false version of the result. Correct proofs have been given by Turnwald and Müller.
Read more about this topic: Permutation Polynomial
Famous quotes containing the word conjecture:
“There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)