Perlecan - Modification of Glycosaminoglycan Chains

Modification of Glycosaminoglycan Chains

Modifications of the heparan sulfate chains on C- and N-terminal domains are the best-studied differences in the secretory pathway of perlecan. Chondroitin sulfate can be substituted for heparan sulfate, and sulfate incorporation or the sugar composition of the chains can change. Loss of enzymes involved in the heparan sulfate synthetic pathway lead to a number of conditions.

Differential heparan sulfate chain modification can occur through a number of regulatory signals. Perlecan in the growth plate of mouse long bones shows glycosylation changes in the chondrocyte progression from the resting zone to the proliferating zone. Although initially the glycosaminoglycan (GAG) chains of perlecan were thought to be exclusively heparan sulfate, chondroitin sulfate chains can be substituted during specific regulatory cues. By expressing a recombinant form of the N-terminal domain I of the protein and demonstrating that digestion of the peptide with either heparanase or chondroitinase did not lead to complete loss of the peptide's activity, it was shown that chondroitin sulfate chains can be added to human perlecan. This was in agreement with previous data showing chondroitin sulfate GAG chains attached to bovine perlecan produced by chondrocytes and that recombinant human domain I protein was glycosylated with both heparan and chondroitin sulfate chains when expressed in Chinese Hamster Ovary cells. The preferential addition of heparan sulfate or chondroitin sulfate chains to domains I and V could have an effect on the differentiation of mesenchymal tissues into cartilage, bone or any number of tissues, but the regulatory mechanism of changing from heparan sulfate to chondroitin sulfate addition are not well understood.

While studying the effect of proteoglycan composition on nephritic permselectivity, it was noted that puromycin treatment of human glomerular endothelial cells (HGEC) altered the sulfation level of GAG chains on proteoglycans such as perlecan, which in turn caused a decrease in the stability of the GAG chains. The core protein mRNA levels of proteoglycans were not affected, thus the decrease in GAG chains was as a result of some other factor, which in this case turned out to be a decrease in expression of sulfate transferase enzymes, which play a key role in GAG biosynthesis. It seems that there may be some overlap in diseases stemming from loss of heparan sulfate proteoglycan expression and loss of enzymes involved in heparan sulfate biosynthesis.

Read more about this topic:  Perlecan

Famous quotes containing the word chains:

    Lap me in soft Lydian airs,
    Married to immortal verse,
    Such as the meeting soul may pierce
    In notes with many a winding bout
    Of linked sweetness long drawn out,
    With wanton heed and giddy cunning,
    The melting voice through mazes running,
    Untwisting all the chains that tie
    The hidden soul of harmony;
    John Milton (1608–1674)