Properties
Peripheral cycles appear in the theory of polyhedral graphs, that is, 3-vertex-connected planar graphs. For every planar graph, and every planar embedding of, the faces of the embedding that are induced cycles must be peripheral cycles. In a polyhedral graph, all faces are peripheral cycles, and every peripheral cycle is a face. It follows from this fact that (up to combinatorial equivalence, the choice of the outer face, and the orientation of the plane) every polyhedral graph has a unique planar embedding.
In planar graphs, the cycle space is generated by the faces, but in non-planar graphs peripheral cycles play a similar role: for every 3-vertex-connected finite graph, the cycle space is generated by the peripheral cycles. The result can also be extended to locally-finite but infinite graphs. In particular, it follows that 3-connected graphs are guaranteed to contain peripheral cycles. There exist 2-connected graphs that do not contain peripheral cycles (an example is the complete bipartite graph, for which every cycle has two bridges) but if a 2-connected graph has minimum degree three then it contains at least one peripheral cycle.
In some algorithms for testing planarity of graphs, it is useful to find a cycle that is not peripheral, in order to partition the problem into smaller subproblems. In a biconnected graph of circuit rank less than three (such as a cycle graph or theta graph) every cycle is peripheral, but every biconnected graph with circuit rank three or more has a non-peripheral cycle, which may be found in linear time.
Generalizing chordal graphs, Weaver & Seymour (1984) define a strangulated graph to be a graph in which every peripheral cycle is a triangle. They characterize these graphs as being the clique-sums of chordal graphs and maximal planar graphs.
Read more about this topic: Peripheral Cycle
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)