Periodic Function

In mathematics, a periodic function is a function that repeats its values in regular intervals or periods. The most important examples are the trigonometric functions, which repeat over intervals of length 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. Any function which is not periodic is called aperiodic.

Read more about Periodic Function:  Definition, Examples, Properties, Double-periodic Functions, Complex Example

Famous quotes containing the words periodic and/or function:

    But parents can be understanding and accept the more difficult stages as necessary times of growth for the child. Parents can appreciate the fact that these phases are not easy for the child to live through either; rapid growth times are hard on a child. Perhaps it’s a small comfort to know that the harder-to-live-with stages do alternate with the calmer times,so parents can count on getting periodic breaks.
    Saf Lerman (20th century)

    The information links are like nerves that pervade and help to animate the human organism. The sensors and monitors are analogous to the human senses that put us in touch with the world. Data bases correspond to memory; the information processors perform the function of human reasoning and comprehension. Once the postmodern infrastructure is reasonably integrated, it will greatly exceed human intelligence in reach, acuity, capacity, and precision.
    Albert Borgman, U.S. educator, author. Crossing the Postmodern Divide, ch. 4, University of Chicago Press (1992)