Local Unpolarized Period Mappings
Assume that f is proper and that X0 is a Kähler variety. The Kähler condition is open, so after possibly shrinking U, Xb is compact and Kähler for all b in U. After shrinking U further we may assume that it is contractible. Then there is a well-defined isomorphism between the cohomology groups of X0 and Xb. These isomorphisms of cohomology groups will not in general preserve the Hodge structures of X0 and Xb because they are induced by diffeomorphisms, not biholomorphisms. Let FpHk(Xb, C) denote the pth step of the Hodge filtration. The Hodge numbers of Xb are the same as those of X0, so the number bp,k = dim FpHk(Xb, C) is independent of b. The period map is the map
where F is the flag variety of chains of subspaces of dimensions bp,k for all p, that sends
Because Xb is a Kähler manifold, the Hodge filtration satisfies the Hodge–Riemann bilinear relations. These imply that
Not all flags of subspaces satisfy this condition. The subset of the flag variety satisfying this condition is called the unpolarized local period domain and is denoted . is an open subset of the flag variety F.
Read more about this topic: Period Mapping
Famous quotes containing the words local and/or period:
“Back now to autumn, leaving the ended husk
Of summer that brought them here for Show Saturday
The men with hunters, dog-breeding wool-defined women,
Children all saddle-swank, mugfaced middleaged wives
Glaring at jellies, husbands on leave from the garden
Watchful as weasels, car-tuning curt-haired sons
Back now, all of them, to their local lives....”
—Philip Larkin (19221986)
“Stupid word, that. Period. In America it means full stop like in punctuation. Thats stupid as well. A period isnt a full stop. Its a new beginning. I dont mean all that creativity, life-giving force, earth-mother stuff, I mean its a new beginning to the month, relief that youre not pregnant, when you dont have to have a child.”
—Michelene Wandor (b. 1940)