Pea Pattern
In mathematics, the look-and-say sequence is the sequence of integers beginning as follows:
- 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ... (sequence A005150 in OEIS).
To generate a member of the sequence from the previous member, read off the digits of the previous member, counting the number of digits in groups of the same digit. For example:
- 1 is read off as "one 1" or 11.
- 11 is read off as "two 1s" or 21.
- 21 is read off as "one 2, then one 1" or 1211.
- 1211 is read off as "one 1, then one 2, then two 1s" or 111221.
- 111221 is read off as "three 1s, then two 2s, then one 1" or 312211.
The look-and-say sequence was introduced and analyzed by John Conway in his paper "The Weird and Wonderful Chemistry of Audioactive Decay" published in Eureka 46, 5–18 in 1986.
The idea of the look-and-say sequence is similar to that of run-length encoding.
If we start with any digit d from 0 to 9 then d will remain indefinitely as the last digit of the sequence. For d different from 1, the sequence starts as follows:
- d, 1d, 111d, 311d, 13211d, 111312211d, 31131122211d, …
Ilan Vardi has called this sequence, starting with d = 3, the Conway sequence (sequence A006715 in OEIS).
Read more about Pea Pattern: Basic Properties, Popularization, Computer Program, Variations, See Also
Famous quotes containing the words pea and/or pattern:
“I worry about people who get born nowadays, because they get born into such tiny familiessometimes into no family at all. When youre the only pea in the pod, your parents are likely to get you confused with the Hope Diamond. And that encourages you to talk too much.”
—Russell Baker (b. 1925)
“With only one life to live we cant afford to live it only for itself. Somehow we must each for himself, find the way in which we can make our individual lives fit into the pattern of all the lives which surround it. We must establish our own relationships to the whole. And each must do it in his own way, using his own talents, relying on his own integrity and strength, climbing his own road to his own summit.”
—Hortense Odlum (1892?)