Path Composition
One can compose paths in a topological space in an obvious manner. Suppose f is a path from x to y and g is a path from y to z. The path fg is defined as the path obtained by first traversing f and then traversing g:
Clearly path composition is only defined when the terminal point of f coincides with the initial point of g. If one considers all loops based at a point x0, then path composition is a binary operation.
Path composition, whenever defined, is not associative due to the difference in parametrization. However it is associative up to path-homotopy. That is, = . Path composition defines a group structure on the set of homotopy classes of loops based at a point x0 in X. The resultant group is called the fundamental group of X based at x0, usually denoted π1(X,x0).
In situations calling for associativity of path composition "on the nose," a path in X may instead be defined as a continuous map from an interval to X for any real a ≥ 0. A path f of this kind has a length |f| defined as a. Path composition is then defined as before with the following modification:
Whereas with the previous definition, f, g, and fg all have length 1 (the length of the domain of the map), this definition makes |fg| = |f| + |g|. What made associativity fail for the previous definition is that although (fg)h and f(gh) have the same length, namely 1, the midpoint of (fg)h occurred between g and h, whereas the midpoint of f(gh) occurred between f and g. With this modified definition (fg)h and f(gh) have the same length, namely |f|+|g|+|h|, and the same midpoint, found at (|f|+|g|+|h|)/2 in both (fg)h and f(gh); more generally they have the same parametrization throughout.
Read more about this topic: Path (topology)
Famous quotes containing the words path and/or composition:
“Today brings the sad, glad tidings that Mrs. Abraham Lincoln has passed from that darkness which had fallen upon her path through this life, out into the light and joy of that life toward which her vision has so long been strained.
Modern education is lethal to children.... We stuff them with mathematics, we pummel them with science, and we use them up before their time.”
—Honoré De Balzac (17991850)
“The proposed Constitution ... is, in strictness, neither a national nor a federal constitution; but a composition of both.”
—James Madison (17511836)