Passive Analogue Filter Development - Transmission Line Theory

Transmission Line Theory

The earliest model of the transmission line was probably described by Georg Ohm (1827) who established that resistance in a wire is proportional to its length. The Ohm model thus included only resistance. Latimer Clark noted that signals were delayed and elongated along a cable, an undesirable form of distortion now called dispersion but then called retardation, and Michael Faraday (1853) established that this was due to the capacitance present in the transmission line. Lord Kelvin (1854) found the correct mathematical description needed in his work on early transatlantic cables; he arrived at an equation identical to the conduction of a heat pulse along a metal bar. This model incorporates only resistance and capacitance, but that is all that was needed in undersea cables dominated by capacitance effects. Kelvin's model predicts a limit on the telegraph signalling speed of a cable but Kelvin still did not use the concept of bandwidth, the limit was entirely explained in terms of the dispersion of the telegraph symbols. The mathematical model of the transmission line reached its fullest development with Oliver Heaviside. Heaviside (1881) introduced series inductance and shunt conductance into the model making four distributed elements in all. This model is now known as the telegrapher's equation and the distributed elements are called the primary line constants.

From the work of Heaviside (1887) it had become clear that the performance of telegraph lines, and most especially telephone lines, could be improved by the addition of inductance to the line. George Campbell at AT&T implemented this idea (1899) by inserting loading coils at intervals along the line. Campbell found that as well as the desired improvements to the line's characteristics in the passband there was also a definite frequency beyond which signals could not be passed without great attenuation. This was a result of the loading coils and the line capacitance forming a low-pass filter, an effect that is only apparent on lines incorporating lumped components such as the loading coils. This naturally led Campbell (1910) to produce a filter with ladder topology, a glance at the circuit diagram of this filter is enough to see its relationship to a loaded transmission line. The cut-off phenomenon is an undesirable side-effect as far as loaded lines are concerned but for telephone FDM filters it is precisely what is required. For this application, Campbell produced band-pass filters to the same ladder topology by replacing the inductors and capacitors with resonators and anti-resonators respectively. Both the loaded line and FDM were of great benefit economically to AT&T and this led to fast development of filtering from this point onwards.

Read more about this topic:  Passive Analogue Filter Development

Famous quotes containing the words line and/or theory:

    The line it is drawn
    The curse it is cast
    The slow one now
    Will later be fast
    As the present now
    Will later be past
    The order is
    Rapidly fadin’.
    And the first one now
    Will later be last
    For the times they are a-changin’.
    Bob Dylan [Robert Allen Zimmerman] (b. 1941)

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)