Combinations
A second useful application of Pascal's triangle is in the calculation of combinations. For example, the number of combinations of n things taken k at a time (called n choose k) can be found by the equation
But this is also the formula for a cell of Pascal's triangle. Rather than performing the calculation, one can simply look up the appropriate entry in the triangle. For example, suppose a basketball team has 10 players and wants to know how many ways there are of selecting 8. Provided we have the first row and the first entry in a row numbered 0, the answer is entry 8 in row 10: 45. That is, the solution of 10 choose 8 is 45.
Read more about this topic: Pascal's Triangle
Famous quotes containing the word combinations:
“I had a quick grasp of the secret to sanityit had become the ability to hold the maximum of impossible combinations in ones mind.”
—Norman Mailer (b. 1923)
“The wider the range of possibilities we offer children, the more intense will be their motivations and the richer their experiences. We must widen the range of topics and goals, the types of situations we offer and their degree of structure, the kinds and combinations of resources and materials, and the possible interactions with things, peers, and adults.”
—Loris Malaguzzi (19201994)
“Europe has a set of primary interests, which to us have none, or a very remote relation. Hence she must be engaged in frequent controversies, the causes of which are essentially foreign to our concerns. Hence, therefore, it must be unwise in us to implicate ourselves, by artificial ties, in the ordinary vicissitudes of her politics or the ordinary combinations and collisions of her friendships or enmities.”
—George Washington (17321799)