Parity (physics) - Quantum Field Theory

Quantum Field Theory

The intrinsic parity assignments in this section are true for relativistic quantum mechanics as well as quantum field theory.

If we can show that the vacuum state is invariant under parity (P|0> = |0>), the Hamiltonian is parity invariant ( = 0) and the quantization conditions remain unchanged under parity, then it follows that every state has good parity, and this parity is conserved in any reaction.

To show that quantum electrodynamics is invariant under parity, we have to prove that the action is invariant and the quantization is also invariant. For simplicity we will assume that canonical quantization is used; the vacuum state is then invariant under parity by construction. The invariance of the action follows from the classical invariance of Maxwell's equations. The invariance of the canonical quantization procedure can be worked out, and turns out to depend on the transformation of the annihilation operator:

Pa(p, ±)P+ = −a(−p, ±)

where p denotes the momentum of a photon and ± refers to its polarization state. This is equivalent to the statement that the photon has odd intrinsic parity. Similarly all vector bosons can be shown to have odd intrinsic parity, and all axial-vectors to have even intrinsic parity.

There is a straightforward extension of these arguments to scalar field theories which shows that scalars have even parity, since

Pa(p)P+ = a(−p).

This is true even for a complex scalar field. (Details of spinors are dealt with in the article on the Dirac equation, where it is shown that fermions and antifermions have opposite intrinsic parity.)

With fermions, there is a slight complication because there is more than one spin group.

Read more about this topic:  Parity (physics)

Famous quotes containing the words quantum, field and/or theory:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    And there, a field rat, startled, squealing bleeds,
    His belly close to ground. I see the blade,
    Blood-stained, continue cutting weeds and shade.
    Jean Toomer (1894–1967)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)