Conversion From Two Parametric Equations To A Single Equation
Converting a set of parametric equations to a single equation involves eliminating the variable from the simultaneous equations . If one of these equations can be solved for t, the expression obtained can be substituted into the other equation to obtain an equation involving x and y only. If and are rational functions then the techniques of the theory of equations such as resultants can be used to eliminate t. In some cases there is no single equation in closed form that is equivalent to the parametric equations.
To take the example of the circle of radius a above, the parametric equations
can be simply expressed in terms of x and y by way of the Pythagorean trigonometric identity:
which is easily identifiable as a type of conic section (in this case, a circle).
Read more about this topic: Parametric Equation
Famous quotes containing the words conversion, single and/or equation:
“The conversion of a savage to Christianity is the conversion of Christianity to savagery.”
—George Bernard Shaw (18561950)
“Without being forgiven, released from the consequences of what we have done, our capacity to act would ... be confined to one single deed from which we could never recover; we would remain the victims of its consequences forever, not unlike the sorcerers apprentice who lacked the magic formula to break the spell.”
—Hannah Arendt (19061975)
“Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.”
—Anna Quindlen (b. 1952)