Parallel Coordinates - Higher Dimensions

Higher Dimensions

Adding more dimensions in parallel coordinates (often abbreviated ||-coords or PCs) involves adding more axes. The value of parallel coordinates is that certain geometrical properties in high dimensions transform into easily seen 2D patterns. For example, a set of points on a line in n-space transforms to a set of polylines (or curves) in parallel coordinates all intersecting at n − 1 points. For n = 2 this yields a point-line duality pointing out why the mathematical foundations of parallel coordinates are developed in the Projective rather than Euclidean space. Also known are the patterns corresponding to (hyper)planes, curves, several smooth (hyper)surfaces, proximities, convexity and recently non-orientability. It is worth mentioning that since the process maps a k-dimensional data onto a lower 2D space, some loss of information is expected. The loss of information can be measured using Parseval's identity (or energy norm).

Read more about this topic:  Parallel Coordinates

Famous quotes containing the words higher and/or dimensions:

    The higher processes are all processes of simplification. The novelist must learn to write, and then he must unlearn it; just as the modern painter learns to draw, and then learns when utterly to disregard his accomplishment, when to subordinate it to a higher and truer effect.
    Willa Cather (1873–1947)

    Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?
    bell hooks (b. c. 1955)