In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). The notion of paracompactness generalizes ordinary compactness; a key motivation for the notion of paracompactness is that it is a sufficient condition for the existence of partitions of unity.
A hereditarily paracompact space is a space such that every subspace of it is a paracompact space. This is equivalent to requiring that every open subspace be paracompact.
Read more about Paracompact Space: Paracompactness, Examples, Properties, Paracompact Hausdorff Spaces, Relationship With Compactness, Variations
Famous quotes containing the word space:
“When my body leaves me
Im lonesome for it.
but body
goes away to I dont know where
and its lonesome to drift
above the space it
fills when its here.”
—Denise Levertov (b. 1923)