Paracompact Space

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). The notion of paracompactness generalizes ordinary compactness; a key motivation for the notion of paracompactness is that it is a sufficient condition for the existence of partitions of unity.

A hereditarily paracompact space is a space such that every subspace of it is a paracompact space. This is equivalent to requiring that every open subspace be paracompact.

Read more about Paracompact Space:  Paracompactness, Examples, Properties, Paracompact Hausdorff Spaces, Relationship With Compactness, Variations

Famous quotes containing the word space:

    The merit of those who fill a space in the world’s history, who are borne forward, as it were, by the weight of thousands whom they lead, shed a perfume less sweet than do the sacrifices of private virtue.
    Ralph Waldo Emerson (1803–1882)