In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). The notion of paracompactness generalizes ordinary compactness; a key motivation for the notion of paracompactness is that it is a sufficient condition for the existence of partitions of unity.
A hereditarily paracompact space is a space such that every subspace of it is a paracompact space. This is equivalent to requiring that every open subspace be paracompact.
Read more about Paracompact Space: Paracompactness, Examples, Properties, Paracompact Hausdorff Spaces, Relationship With Compactness, Variations
Famous quotes containing the word space:
“The limitless future of childhood shrinks to realistic proportions, to one of limited chances and goals; but, by the same token, the mastery of time and space and the conquest of helplessness afford a hitherto unknown promise of self- realization. This is the human condition of adolescence.”
—Peter Blos (20th century)