Orthogonal Coordinates - Table of Orthogonal Coordinates

Table of Orthogonal Coordinates

Besides the usual cartesian coordinates, several others are tabulated below. Interval notation is used for compactness in the coordinates column.

Curvillinear coordinates (q1, q2, q3) Transformation from cartesian (x, y, z) Scale factors
Spherical polar coordinates

\begin{align}
x&=r\sin\theta\cos\phi \\
y&=r\sin\theta\sin\phi \\
z&=r\cos\theta
\end{align} \begin{align}
h_1&=1 \\
h_2&=r \\
h_3&=r\sin\theta
\end{align}
Cylindrical polar coordinates

\begin{align}
x&=r\cos\phi \\
y&=r\sin\phi \\
z&=z
\end{align} \begin{align}
h_1&=h_3=1 \\
h_2&=r
\end{align}
Parabolic cylindrical coordinates

\begin{align}
x&=\frac{1}{2}(u^2-v^2)\\
y&=uv\\
z&=z
\end{align} \begin{align}
h_1&=h_2=\sqrt{u^2+v^2} \\
h_3&=1
\end{align}
Paraboloidal coordinates

\begin{align}
x&=uv\cos\phi\\
y&=uv\sin\phi\\
z&=\frac{1}{2}(u^2-v^2)
\end{align} \begin{align}
h_1&=h_2=\sqrt{u^2+v^2} \\
h_3&=uv
\end{align}
Elliptic cylindrical coordinates

\begin{align}
x&=a\cosh u \cos v\\
y&=a\sinh u \sin v\\
z&=z
\end{align} \begin{align}
h_1&=h_2=a\sqrt{\sinh^2u+\sin^2v} \\
h_3&=1
\end{align}
Prolate spheroidal coordinates

\begin{align}
x&=a\sinh\xi\sin\eta\cos\phi\\
y&=a\sinh\xi\sin\eta\sin\phi\\
z&=a\cosh\xi\cos\eta
\end{align} \begin{align}
h_1&=h_2=a\sqrt{\sinh^2\xi+\sin^2\eta} \\
h_3&=a\sinh\xi\sin\eta
\end{align}
Oblate spheroidal coordinates

\begin{align}
x&=a\cosh\xi\cos\eta\cos\phi\\
y&=a\cosh\xi\cos\eta\sin\phi\\
z&=a\sinh\xi\sin\eta
\end{align} \begin{align}
h_1&=h_2=a\sqrt{\sinh^2\xi+\sin^2\eta} \\
h_3&=a\cosh\xi\cos\eta
\end{align}
Ellipsoidal coordinates

\begin{align}
& (\lambda, \mu, \nu)\\
& \lambda < c^2 < b^2 < a^2,\\
& c^2 < \mu < b^2 < a^2,\\
& c^2 < b^2 < \nu < a^2,
\end{align}

where

Bipolar coordinates

\begin{align}
x&=\frac{a\sinh v}{\cosh v - \cos u}\\
y&=\frac{a\sin u}{\cosh v - \cos u}\\
z&=z
\end{align} \begin{align}
h_1&=h_2=\frac{a}{\cosh v - \cos u}\\
h_3&=1
\end{align}
Toroidal coordinates

\begin{align}
x &= \frac{a\sinh v \cos\phi}{\cosh v - \cos u}\\
y &= \frac{a\sinh v \sin\phi}{\cosh v - \cos u} \\
z &= \frac{a\sin u}{\cosh v - \cos u}
\end{align} \begin{align}
h_1&=h_2=\frac{a}{\cosh v - \cos u}\\
h_3&=\frac{a\sinh v}{\cosh v - \cos u}
\end{align}
Conical coordinates

\begin{align}
& (\lambda,\mu,\nu)\\
& \nu^2 < b^2 < \mu^2 < a^2 \\
& \lambda \in [0,\infty)
\end{align}

\begin{align}
x &= \frac{\lambda\mu\nu}{ab}\\
y &= \frac{\lambda}{a}\sqrt{\frac{(\mu^2-a^2)(\nu^2-a^2)}{a^2-b^2}} \\
z &= \frac{\lambda}{b}\sqrt{\frac{(\mu^2-b^2)(\nu^2-b^2)}{a^2-b^2}}
\end{align} \begin{align}
h_1&=1\\
h_2^2&=\frac{\lambda^2(\mu^2-\nu^2)}{(\mu^2-a^2)(b^2-\mu^2)}\\
h_3^2&=\frac{\lambda^2(\mu^2-\nu^2)}{(\nu^2-a^2)(\nu^2-b^2)}
\end{align}

Read more about this topic:  Orthogonal Coordinates

Famous quotes containing the word table:

    A child who is not rigorously instructed in the matter of table manners is a child whose future is being dealt with cavalierly. A person who makes an admiral’s hat out of linen napkins is not going to be in wild social demand.
    Fran Lebowitz (20th century)