Euler Lines and Homothetic Orthocentric Systems
Let vectors a, b, c and h determine the position of each of the four orthocentric points and let n = (a + b + c + h) / 4 be the position vector of N, the common nine-point center. Join each of the four orthocentric points to their common nine-point center and extend them into four lines. These four lines now represent the Euler lines of the four possible triangles where the extended line HN is the Euler line of triangle ABC and the extended line AN is the Euler line of triangle BCH etc. If a point P is chosen on the Euler line HN of the reference triangle ABC with a position vector p such that p = n + α (h − n) where α is a pure constant independent of the positioning of the four orthocentric points and three more points PA, PB, PC such that pa = n + α (a − n) etc., then P, PA, PB, PC form an orthocentric system. This generated othocentric system is always homothetic to the original system of four points with the common nine-point center as the homothetic center and α the ratio of similitude.
When P is chosen as the centroid G, then α = −1/3. When P is chosen as the circumcenter O, then α = −1 and the generated orthocentric system is congruent to the original system as well as being a reflection of it about the nine-point center. In this configuration PA, PB, PC form a Johnson triangle of the original reference triangle ABC. Consequently the circumcircles of the four triangles ABC, ABH, ACH, BCH are all equal and form a set of Johnson circles as shown in the diagram adjacent.
Read more about this topic: Orthocentric System
Famous quotes containing the words lines and/or systems:
“Wittgenstein imagined that the philosopher was like a therapist whose task was to put problems finally to rest, and to cure us of being bewitched by them. So we are told to stop, to shut off lines of inquiry, not to find things puzzling nor to seek explanations. This is intellectual suicide.”
—Simon Blackburn (b. 1944)
“I am beginning to suspect all elaborate and special systems of education. They seem to me to be built up on the supposition that every child is a kind of idiot who must be taught to think.”
—Anne Sullivan (18661936)