Proof
Suppose it were possible to construct a graph that fulfils condition (*) which is not Hamiltonian. According to this supposition, let G be a graph on n ≥ 3 vertices that satisfies property (*), is not Hamiltonian, and has the maximum possible number of edges among all n-vertex non-Hamiltonian graphs that satisfy property (*). Because the number of edges was chosen to be maximal, G must contain a Hamiltonian path v1v2...vn, for otherwise it would be possible to add edges to G without breaching property (*). Since G is not Hamiltonian, v1 cannot be adjacent to vn, for otherwise v1v2...vn would be a Hamiltonian cycle. By property (*), deg v1 + deg vn ≥ n, and the pigeon hole principle implies that for some i in the range 2 ≤ i ≤ n − 1, vi is adjacent to v1 and vi − 1 is adjacent to vn. But the cycle v1v2...vi − 1vnvn − 1...vi is then a Hamilton cycle. This contradiction yields the result.
Read more about this topic: Ore's Theorem
Famous quotes containing the word proof:
“a meek humble Man of modest sense,
Who preaching peace does practice continence;
Whose pious lifes a proof he does believe,
Mysterious truths, which no Man can conceive.”
—John Wilmot, 2d Earl Of Rochester (16471680)
“If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nations greatest strength, will tell their own story to the world.”
—Susan B. Anthony (18201906)
“It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.”
—William Shakespeare (15641616)