Multiplicative Sets
The Ore condition can be generalized to other multiplicative subsets, and is presented in textbook form in (Lam 1999, §10) and (Lam 2007, §10). A subset S of a ring R is called a right denominator set if it satisfies the following three conditions for every a,b in R, and s, t in S:
- st in S; (The set S is multiplicatively closed.)
- aS ∩ sR is not empty; (The set S is right permutable.)
- If sa = 0, then there is some u in S with au = 0; (The set S is right reversible.)
If S is a right denominator set, then one can construct the ring of right fractions RS−1 similarly to the commutative case. If S is taken to be the set of regular elements (those elements a in R such that if b in R is nonzero, then ab and ba are nonzero), then the right Ore condition is simply the requirement that S be a right denominator set.
Many properties of commutative localization hold in this more general setting. If S is a right denominator set for a ring R, then the left R-module RS−1 is flat. Furthermore, if M is a right R-module, then the S-torsion, torS(M) = { m in M : ms = 0 for some s in S }, is an R-submodule isomorphic to Tor1(M,RS−1), and the module M ⊗R RS−1 is naturally isomorphic to a module MS−1 consisting of "fractions" as in the commutative case.
Read more about this topic: Ore Condition
Famous quotes containing the word sets:
“This is certainly not the place for a discourse about what festivals are for. Discussions on this theme were plentiful during that phase of preparation and on the whole were fruitless. My experience is that discussion is fruitless. What sets forth and demonstrates is the sight of events in action, is living through these events and understanding them.”
—Doris Lessing (b. 1919)