Ore Condition - Multiplicative Sets

Multiplicative Sets

The Ore condition can be generalized to other multiplicative subsets, and is presented in textbook form in (Lam 1999, §10) and (Lam 2007, §10). A subset S of a ring R is called a right denominator set if it satisfies the following three conditions for every a,b in R, and s, t in S:

  1. st in S; (The set S is multiplicatively closed.)
  2. aSsR is not empty; (The set S is right permutable.)
  3. If sa = 0, then there is some u in S with au = 0; (The set S is right reversible.)

If S is a right denominator set, then one can construct the ring of right fractions RS−1 similarly to the commutative case. If S is taken to be the set of regular elements (those elements a in R such that if b in R is nonzero, then ab and ba are nonzero), then the right Ore condition is simply the requirement that S be a right denominator set.

Many properties of commutative localization hold in this more general setting. If S is a right denominator set for a ring R, then the left R-module RS−1 is flat. Furthermore, if M is a right R-module, then the S-torsion, torS(M) = { m in M : ms = 0 for some s in S }, is an R-submodule isomorphic to Tor1(M,RS−1), and the module MR RS−1 is naturally isomorphic to a module MS−1 consisting of "fractions" as in the commutative case.

Read more about this topic:  Ore Condition

Famous quotes containing the word sets:

    Certain anthropologists hold that man, having discovered tools, ceased to evolve biologically. Animals, never having discovered them, continue to fashion drills out of their beaks, oars out of their hind feet, wings out of their forefeet, suits of armor out of their hides, levers out of their horns, saws out of their teeth. Whether this be true or not, all authorities agree that man is the tool-using animal. It sets him off from the rest of the animal kingdom as drastically as does speech.
    Stuart Chase (1888–1985)