Ordered Weighted Averaging (OWA) Aggregation Operators - Definition

Definition

Formally an OWA operator of dimension is a mapping that has an associated collection of weights lying in the unit interval and summing to one and with

where is the jth largest of the .

By choosing different W one can implement different aggregation operators. The OWA operator is a non-linear operator as a result of the process of determining the bj.

Read more about this topic:  Ordered Weighted Averaging (OWA) Aggregation Operators

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)