Order Of Integration (calculus)
In calculus, interchange of the order of integration is a methodology that transforms iterated integrals (or multiple integrals through the use of Fubini's theorem) of functions into other, hopefully simpler, integrals by changing the order in which the integrations are performed. In some cases, the order of integration can be validly interchanged; in others it cannot.
Read more about Order Of Integration (calculus): Problem Statement, Relation To Integration By Parts, Principal-value Integrals, Basic Theorems, See Also
Famous quotes containing the words order and/or integration:
“Woman ... cannot be content with health and agility: she must make exorbitant efforts to appear something that never could exist without a diligent perversion of nature. Is it too much to ask that women be spared the daily struggle for superhuman beauty in order to offer it to the caresses of a subhumanly ugly mate?”
—Germaine Greer (b. 1939)
“The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.”
—Claude Lévi-Strauss (b. 1908)