Order (group Theory) - Counting By Order of Elements

Counting By Order of Elements

Suppose G is a finite group of order n, and d is a divisor of n. The number of elements in G of order d is a multiple of φ(d), where φ is Euler's totient function, giving the number of positive integers no larger than d and coprime to it. For example in the case of S3, φ(3) = 2, and we have exactly two elements of order 3. The theorem provides no useful information about elements of order 2, because φ(2) = 1, and is only of limited utility for composite d such as d=6, since φ(6)=2, and there are zero elements of order 6 in S3.

Read more about this topic:  Order (group Theory)

Famous quotes containing the words counting, order and/or elements:

    What culture lacks is the taste for anonymous, innumerable germination. Culture is smitten with counting and measuring; it feels out of place and uncomfortable with the innumerable; its efforts tend, on the contrary, to limit the numbers in all domains; it tries to count on its fingers.
    Jean Dubuffet (1901–1985)

    Almost everywhere we find . . . the use of various coercive measures, to rid ourselves as quickly as possible of the child within us—i.e., the weak, helpless, dependent creature—in order to become an independent competent adult deserving of respect. When we reencounter this creature in our children, we persecute it with the same measures once used in ourselves.
    Alice Miller (20th century)

    English general and singular terms, identity, quantification, and the whole bag of ontological tricks may be correlated with elements of the native language in any of various mutually incompatible ways, each compatible with all possible linguistic data, and none preferable to another save as favored by a rationalization of the native language that is simple and natural to us.
    Willard Van Orman Quine (b. 1908)