Order-7 Truncated Triangular Tiling - Related Tilings

Related Tilings

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (n.6.6), and Coxeter group symmetry.

Dimensional family of truncated polyhedra and tilings: n.6.6
Symmetry
*n42
Spherical Euclidean Hyperbolic...
*232

D3h
*332

Td
*432

Oh
*532

Ih
*632

P6m
*732

*832
...
*∞32

Order 12 24 48 120
Truncated
figures

2.6.6

3.6.6

4.6.6

5.6.6

6.6.6

7.6.6

8.6.6

∞.6.6
Coxeter
Schläfli

t0,1{3,2}

t0,1{3,3}

t0,1{3,4}

t0,1{3,5}

t0,1{3,6}

t0,1{3,7}

t0,1{3,8}

t0,1{3,∞}
Uniform dual figures
n-kis
figures

V2.6.6

V3.6.6

V4.6.6

V5.6.6

V6.6.6

V7.6.6

V8.6.6

V∞.6.6
Coxeter

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

Uniform heptagonal/triangular tilings
Symmetry:, (*732) +, (732)
{7,3} t0,1{7,3} t1{7,3} t1,2{7,3} t2{7,3} t0,2{7,3} t0,1,2{7,3} s{7,3}
Uniform duals
V73 V3.14.14 V3.7.3.7 V6.6.7 V37 V3.4.7.4 V4.6.14 V3.3.3.3.7

Read more about this topic:  Order-7 Truncated Triangular Tiling

Famous quotes containing the word related:

    The near explains the far. The drop is a small ocean. A man is related to all nature. This perception of the worth of the vulgar is fruitful in discoveries. Goethe, in this very thing the most modern of the moderns, has shown us, as none ever did, the genius of the ancients.
    Ralph Waldo Emerson (1803–1882)