Orbital Spaceflight - Deorbit and Re-entry

Deorbit and Re-entry

Returning spacecraft (including all potentially manned craft) have to find a way of slowing down as much as possible while still in higher atmospheric layers and avoid hitting the ground (lithobraking) or burning up. For many orbital space flights, initial deceleration is provided by the retrofiring of the craft's rocket engines, perturbing the orbit (by lowering perigee down into the atmosphere) onto a suborbital trajectory. Many spacecraft in low-Earth orbit (e.g., nanosatellites or spacecraft that have run out of station keeping fuel or are otherwise non-functional) solve the problem of deceleration from orbital speeds through using atmospheric drag (aerobraking) provide initial deceleration. In all cases, once initial deceleration has lowered the orbital perigee into the mesosphere, all spacecraft lose most of the remaining speed, and therefore kinetic energy, through the atmospheric drag effect of aerobraking.

Intentional aerobraking is achieved by orienting the returning space craft to fly so as to present the heat shields forwards towards the atmosphere so as to protect against the high temperatures generated by atmospheric compression and friction caused by passing through the atmosphere at hypersonic speeds. The thermal energy is dissipated mainly by compression heating the air in a shockwave ahead of the vehicle using a blunt heat shield shape, with the aim of minimising the heat entering the vehicle.

Sub-orbital space flights, being at a much lower speed, do not generate anywhere near as much heat upon re-entry.

Even if the vehicle is a satellite that is ultimately expendable, most space authorities are pushing towards controlled re-entry techniques to avoid issues of space debris reaching the ground and causing a hazard to lives and property. In addition, this minimises the creation of orbital space junk.

Read more about this topic:  Orbital Spaceflight