Proof
Let X τ denote the stopped process, it is also a martingale (or a submartingale or supermartingale, respectively). Under condition (a) or (b), the random variable Xτ is well defined. Under condition (c) the stopped process X τ is bounded, hence by Doob's martingale convergence theorem it converges a.s. pointwise to a random variable which we call Xτ.
If condition (c) holds, then the stopped process X τ is bounded by the constant random variable M := c. Otherwise, writing the stopped process as
gives |Xtτ| ≤ M for all t ∈ ℕ0, where
- .
By the monotone convergence theorem
- .
If condition (a) holds, then this series only has a finite number of non-zero terms, hence M is integrable.
If condition (b) holds, then we continue by inserting a conditional expectation and using that the event {τ > s} is known at time s (note that τ is assumed to be a stopping time with respect to the filtration), hence
where a representation of the expected value of non-negative integer-valued random variables is used for the last equality.
Therefore, under any one of the three conditions in the theorem, the stopped process is dominated by an integrable random variable M. Since the stopped process X τ converges almost surely to Xτ , the dominated convergence theorem implies
By the martingale property of the stopped process,
hence
Similarly, if X is a submartingale or supermartingale, respectively, change the equality in the last two formulas to the appropriate inequality.
Read more about this topic: Optional Stopping Theorem
Famous quotes containing the word proof:
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)
“a meek humble Man of modest sense,
Who preaching peace does practice continence;
Whose pious lifes a proof he does believe,
Mysterious truths, which no Man can conceive.”
—John Wilmot, 2d Earl Of Rochester (16471680)
“The chief contribution of Protestantism to human thought is its massive proof that God is a bore.”
—H.L. (Henry Lewis)