Optical Properties of Carbon Nanotubes - Raman Scattering

Raman Scattering

Raman spectroscopy has good spatial resolution (~0.5 micrometers) and sensitivity (single nanotubes); it requires only minimal sample preparation and is rather informative. Consequently, Raman spectroscopy is probably the most popular technique of carbon nanotube characterization. Raman scattering in SWCNTs is resonant, i.e., only those tubes are probed which have one of the bandgaps equal to the exciting laser energy. Several scattering modes dominate the SWCNT spectrum, as discussed below.

Similar to photoluminescence mapping, the energy of the excitation light can be scanned in Raman measurements, thus producing Raman maps. Those maps also contain oval-shaped features uniquely identifying (n, m) indices. Contrary to PL, Raman mapping detects not only semiconducting but also metallic tubes, and it is less sensitive to nanotube bundling than PL. However, requirement of a tunable laser and a dedicated spectrometer is a strong technical impediment.

Read more about this topic:  Optical Properties Of Carbon Nanotubes

Famous quotes containing the word scattering:

    Or of the garden where we first mislaid
    Simplicity of wish and will, forgetting
    Out of what cognate splendor all things came
    To take their scattering names;
    Richard Wilbur (b. 1921)