Formal Statement
Suppose the following data is given:
- an open bounded domain ⊂ ℝn with smooth boundary
- a smooth function on ∂ (the boundary of )
- a smooth function defined on all of such that <, i.e. the restriction of to the boundary of (its trace) is less than .
Then consider the set
which is a closed convex subset of the Sobolev space of square integrable functions with square integrable weak first derivatives, containing precisely those functions with the desired boundary conditions which are also above the obstacle. The solution to the obstacle problem is the function which minimizes the energy integral
over all functions belonging to ; the existence of such a minimizer is assured by considerations of Hilbert space theory.
Read more about this topic: Obstacle Problem
Famous quotes containing the words formal and/or statement:
“The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.”
—David Elkind (20th century)
“The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.”
—Andrew Jackson (17671845)