Numbering (computability Theory) - Types of Numberings

Types of Numberings

A numbering is total if it is a total function. If the domain of a partial numbering is recursively enumerable then there always exists an equivalent total numbering (equivalence of numberings is defined below).

A numbering η is decidable if the set is a decidable set.

A numbering η is single-valued if η(x) = η(y) if and only if x=y; in other words if η is an injective function. A single-valued numbering of the set of partial computable functions is called a Friedberg numbering.

Read more about this topic:  Numbering (computability Theory)

Famous quotes containing the words types of and/or types:

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    He’s one of those know-it-all types that, if you flatter the wig off him, he chatter like a goony bird at mating time.
    —Michael Blankfort. Lewis Milestone. Johnson (Reginald Gardner)