Nucleophilic Acyl Substitution - Reaction Mechanism

Reaction Mechanism

Carbonyl compounds react with nucleophiles via an addition mechanism: the nucleophile attacks the carbonyl carbon, forming a tetrahedral intermediate. This reaction can be accelerated by acidic conditions, which make the carbonyl more electrophilic, or basic conditions, which provide a more anionic and therefore more reactive nucleophile. The tetrahedral intermediate itself can be an alcohol or alkoxide, depending on the pH of the reaction.

The tetrahedral intermediate of an acyl compound contains a substituent attached to the central carbon that can act as a leaving group. After the tetrahedral intermediate forms, it collapses, recreating the carbonyl C=O bond and ejecting the leaving group in an elimination reaction. As a result of this two-step addition/elimination process, the nucleophile takes the place of the leaving group on the carbonyl compound by way of an intermediate state that does not contain a carbonyl. Both steps are reversible and as a result, nucleophilic acyl substitution reactions are equilibrium processes. Because the equilibrium will favor the product containing the best nucleophile, the leaving group must be a comparatively poor nucleophile in order for a reaction to be practical.

Read more about this topic:  Nucleophilic Acyl Substitution

Famous quotes containing the words reaction and/or mechanism:

    Christianity was only a very strong and singularly well-timed Salvation Army movement that happened to receive help from an unusual and highly dramatic incident. It was a Puritan reaction in an age when, no doubt, a Puritan reaction was much wanted; but like all sudden violent reactions, it soon wanted reacting against.
    Samuel Butler (1835–1902)

    The law isn’t justice. It’s a very imperfect mechanism. If you press exactly the right buttons and are also lucky, justice may show up in the answer. A mechanism is all the law was ever intended to be.
    Raymond Chandler (1888–1959)