Nucleic Acid Thermodynamics

Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of double-stranded DNA (dsDNA). The melting temperature (Tm) is defined as the temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state. Tm depends on the length of the DNA molecule and its specific nucleotide sequence. DNA, when in a state where its two strands are dissociated (i.e., the dsDNA molecule exists as two independent strands), is referred to as having been denatured by the high temperature.

Read more about Nucleic Acid Thermodynamics:  Thermodynamics of The Two-state Model, Estimating Thermodynamic Properties From Nucleic Acid Sequence, See Also