Nuclear Density - Applications and Extensions

Applications and Extensions

The components of an atom and of an atomic nucleus have varying densities. The proton is not a fundamental particle, being composed of quark-gluon matter. Its size is approximately 10−15 meters and its density 1018 kg/m3. The descriptive term nuclear density is also applied to situations where similarly high densities occur, such as within neutron stars.

Using deep inelastic scattering, it has been estimated that the "size" of an electron, if it is not a point particle, must be less than 10−17 meters. This would correspond to a density of roughly 1021 kg/m3.

Probing deeper within particles, one finds quarks which appear to be very dense and very hard. There are possibilities for still higher densities when it comes to quark matter, gluon matter, or neutrino matter. In the immediate future, the highest experimentally measurable densities will likely be limited to leptons and quarks.

Read more about this topic:  Nuclear Density

Famous quotes containing the word extensions:

    The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we don’t like what we see, we feel angry at the reflection.
    Elaine Heffner (20th century)