Computing Principal Roots
The nth root of an integer is not always an integer, and if it is not an integer then it is not a rational number. For instance, the fifth root of 34 is
where the dots signify that the decimal expression does not end after any finite number of digits. Since in this example the digits after the decimal never enter a repeating pattern, the number is irrational.
The nth root of a number A can be computed by the nth root algorithm, a special case of Newton's method. Start with an initial guess x0 and then iterate using the recurrence relation
until the desired precision is reached.
Depending on the application, it may be enough to use only the first Newton approximant:
For example, to find the fifth root of 34, note that 25 = 32 and thus take x = 32 and y = 2 in the above formula. This yields
The error in the approximation is only about 0.03%.
Newton's method can be modified to produce a generalized continued fraction for the nth root which can be modified in various ways as described in that article. For example:
In the case of the fifth root of 34 above (after dividing out selected common factors):
Read more about this topic: nth Root
Famous quotes containing the words principal and/or roots:
“I would urge that the yeast of education is the idea of excellence, and the idea of excellence comprises as many forms as there are individuals, each of whom develops his own image of excellence. The school must have as one of its principal functions the nurturing of images of excellence.”
—Jerome S. Bruner (20th century)
“Einstein is not ... merely an artist in his moments of leisure and play, as a great statesman may play golf or a great soldier grow orchids. He retains the same attitude in the whole of his work. He traces science to its roots in emotion, which is exactly where art is also rooted.”
—Havelock Ellis (18591939)