Nose Cone Design - Nose Cone Shapes and Equations - Parabolic

Parabolic

This nose shape is not the blunt shape that is envisioned when people commonly refer to a ‘parabolic’ nose cone. The Parabolic Series nose shape is generated by rotating a segment of a parabola around a line parallel to its Latus rectum. This construction is similar to that of the Tangent Ogive, except that a parabola is the defining shape rather than a circle. Just as it does on an Ogive, this construction produces a nose shape with a sharp tip. For the blunt shape typically associated with a parabolic nose, see the Power Series. (The parabolic shape is also often confused with the elliptical shape.)

For :

K’ can vary anywhere between 0 and 1, but the most common values used for nose cone shapes are:

K’ = 0 for a cone
K’ = 0.5 for a 1/2 parabola
K’ = 0.75 for a 3/4 parabola
K’ = 1 for a full parabola

For the case of the full Parabola (K’=1) the shape is tangent to the body at its base, and the base is on the axis of the parabola. Values of K’ less than one result in a ‘slimmer’ shape, whose appearance is similar to that of the secant ogive. The shape is no longer tangent at the base, and the base is parallel to, but offset from, the axis of the parabola.

Read more about this topic:  Nose Cone Design, Nose Cone Shapes and Equations