Norm (mathematics) - Definition

Definition

Given a vector space V over a subfield F of the complex numbers, a norm on V is a function p: VR with the following properties:

For all aF and all u, vV,

  1. p(av) = |a| p(v), (positive homogeneity or positive scalability).
  2. p(u + v) ≤ p(u) + p(v) (triangle inequality or subadditivity).
  3. If p(v) = 0 then v is the zero vector (separates points).

A simple consequence of the first two axioms, positive homogeneity and the triangle inequality, is p(0) = 0 and thus

p(v) ≥ 0 (positivity).

A seminorm is a norm with the 3rd property (separating points) removed.

Every vector space V with seminorm p(v) induces a normed space V/W, called the quotient space, where W is the subspace of V consisting of all vectors v in V with p(v) = 0. The induced norm on V/W is clearly well-defined and is given by:

p(W + v) = p(v).

A topological vector space is called normable (seminormable) if the topology of the space can be induced by a norm (seminorm).

Read more about this topic:  Norm (mathematics)

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)