Non-volcanic Passive Margins - Typical Characteristics

Typical Characteristics

NVPM are the result of rifting when a continent breaks up to form an ocean, producing transitional crust without volcanism. Extension causes a number of events to occur. First is lithospheric thinning, which allows asthenospherc upwelling; heating further erodes the lithosphere, furthering the thinning process. The extensional forces also cause listric faults and continentward dipping reflectors that help identify NVPM and distinguish them from VPM, characterized by seaward-dipping seismic reflectors. The main difference between NVPM and VPM is that in the latter case, the mantle is hot enough to melt and produce voluminous basalts, whereas in the former case the mantle doesn't melt and there is little or no volcanism. Instead, extension simply pulls the crust away, exposing or "unroofing" the mantle, exposing serpentinized peridotite. The mantle doesn't melt because it is cold or upwells slowly, so there are no igneous rocks like there are in VPM. The basalts and granites are replaced with serpentinized peridotite, accompanied by unique serpentothemal and hydrothermal activity. Increasing density of the lithosphere as it cools and sediment accumulation causes subsidence.

Read more about this topic:  Non-volcanic Passive Margins

Famous quotes containing the word typical:

    A building is akin to dogma; it is insolent, like dogma. Whether or no it is permanent, it claims permanence, like a dogma. People ask why we have no typical architecture of the modern world, like impressionism in painting. Surely it is obviously because we have not enough dogmas; we cannot bear to see anything in the sky that is solid and enduring, anything in the sky that does not change like the clouds of the sky.
    Gilbert Keith Chesterton (1874–1936)