Example: Dirichlet Function
Consider the Dirichlet function
It is well known that the function is discontinuous at every point. Let us check this in terms of the hyperreal definition of continuity above, for instance let us show that the Dirichlet function is not continuous at π. Consider the continued fraction approximation an of π. Now let the index n be an infinite hypernatural number. By the transfer principle, the natural extension of the Dirichlet function takes the value 1 at an. Note that the hyperrational point an is infinitely close to π. Thus the natural extension of the Dirichlet function takes different values (0 and 1) at these two infinitely close points, and therefore the Dirichlet function is not continuous at π.
Read more about this topic: Non-standard Calculus
Famous quotes containing the word function:
“The fact remains that the human being in early childhood learns to consider one or the other aspect of bodily function as evil, shameful, or unsafe. There is not a culture which does not use a combination of these devils to develop, by way of counterpoint, its own style of faith, pride, certainty, and initiative.”
—Erik H. Erikson (19041994)