Description
The target manifold is equipped with a Riemannian metric g. Σ is a differentiable map from Minkowski space M (or some other space) to T.
The Lagrangian density in contemporary chiral form is given by:
where here, we have used a + - - - metric signature and the partial derivative is given by a section of the jet bundle of T×M and V is the potential.
In the coordinate notation, with the coordinates Σa, a=1,...,n where n is the dimension of T,
- .
In more than 2 dimensions, nonlinear σ models are nonrenormalizable. This means they can only arise as effective field theories. New physics is needed at around the distance scale where the two point connected correlation function is of the same order as the curvature of the target manifold. This is called the UV completion of the theory.
There is a special class of nonlinear σ models with the internal symmetry group G *. If G is a Lie group and H is a Lie subgroup, then the quotient space G/H is a manifold (subject to certain technical restrictions like H being a closed subset) and is also a homogeneous space of G or in other words, a nonlinear realization of G. In many cases, G/H can be equipped with a Riemannian metric which is G-invariant. This is always the case, for example, if G is compact. A nonlinear σ model with G/H as the target manifold with a G-invariant Riemannian metric and a zero potential is called a quotient space (or coset space) nonlinear σ model.
When computing path integrals, the functional measure needs to be "weighted" by the square root of the determinant of g
This model proved to be relevant in string theory where the two-dimensional manifold is named worldsheet. Proof of renormalizability was given by Daniel Friedan. He showed that the theory admits a renormalization group equation, at the leading order of perturbation theory, in the form
being the Ricci tensor.
This represents a Ricci flow having Einstein field equations for the target manifold as a fixed point. The existence of such a fixed point is relevant, as it grants, at this order of perturbation theory, that conformal invariance is not lost due to quantum corrections and one has a sensible quantum field theory. Further adding nonlinear interactions representing flavor-chiral anomalies results in the Wess–Zumino–Witten model, which augments the geometry of the flow to include torsion, leading to an infrared fixed point as well, on account of teleparallelism ("geometrostasis").
Read more about this topic: Non-linear Sigma Model
Famous quotes containing the word description:
“It is possibleindeed possible even according to the old conception of logicto give in advance a description of all true logical propositions. Hence there can never be surprises in logic.”
—Ludwig Wittgenstein (18891951)
“A sound mind in a sound body, is a short, but full description of a happy state in this World: he that has these two, has little more to wish for; and he that wants either of them, will be little the better for anything else.”
—John Locke (16321704)
“The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.”
—Freda Adler (b. 1934)