A Smooth Function Which Is Nowhere Real Analytic
A more pathological example, of an infinitely differentiable function which is not analytic at any point can be constructed by means of a Fourier series as follows. Let A:={2n : n ∈ N } be the set of all powers of 2, and define for all x ∈ R
Since the series converge for all n ∈ N, this function is easily seen to be of class C∞, by a standard inductive application of the Weierstrass M-test, and of the theorem of limit under the sign of derivative. Moreover, for any dyadic rational multiple of π, that is x:=π p/q with p ∈ N and q ∈ A, and for all order of derivation n ∈ A, n ≥ 4 and n > q we have
where we used the fact that cos(kx)=1 for all k > q. As a consequence, at any such x ∈ R
so that the radius of convergence of the Taylor series of f at x is 0 by the Cauchy-Hadamard formula . Since the set of analyticity of a function is an open set, and since dyadic rationals are dense, we conclude that f is nowhere analytic in R.
Read more about this topic: Non-analytic Smooth Function
Famous quotes containing the words smooth, function, real and/or analytic:
“There are acacias, a graceful species amusingly devitalized by sentimentality, this kind drooping its leaves with the grace of a young widow bowed in controllable grief, this one obscuring them with a smooth silver as of placid tears. They please, like the minor French novelists of the eighteenth century, by suggesting a universe in which nothing cuts deep.”
—Rebecca West (18921983)
“Advocating the mere tolerance of difference between women is the grossest reformism. It is a total denial of the creative function of difference in our lives. Difference must be not merely tolerated, but seen as a fund of necessary polarities between which our creativity can spark like a dialectic.”
—Audre Lorde (19341992)
“A real fox calls sour not only those grapes that he cannot reach but also those that he has reached and taken away from others.”
—Friedrich Nietzsche (18441900)
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)