A Smooth Function Which Is Nowhere Real Analytic
A more pathological example, of an infinitely differentiable function which is not analytic at any point can be constructed by means of a Fourier series as follows. Let A:={2n : n ∈ N } be the set of all powers of 2, and define for all x ∈ R
Since the series converge for all n ∈ N, this function is easily seen to be of class C∞, by a standard inductive application of the Weierstrass M-test, and of the theorem of limit under the sign of derivative. Moreover, for any dyadic rational multiple of π, that is x:=π p/q with p ∈ N and q ∈ A, and for all order of derivation n ∈ A, n ≥ 4 and n > q we have
where we used the fact that cos(kx)=1 for all k > q. As a consequence, at any such x ∈ R
so that the radius of convergence of the Taylor series of f at x is 0 by the Cauchy-Hadamard formula . Since the set of analyticity of a function is an open set, and since dyadic rationals are dense, we conclude that f is nowhere analytic in R.
Read more about this topic: Non-analytic Smooth Function
Famous quotes containing the words smooth, function, real and/or analytic:
“From Rumors tongues
They bring smooth comforts false, worse than true wrongs.”
—William Shakespeare (15641616)
“Think of the tools in a tool-box: there is a hammer, pliers, a saw, a screwdriver, a rule, a glue-pot, nails and screws.The function of words are as diverse as the functions of these objects.”
—Ludwig Wittgenstein (18891951)
“nor till the poets among us can be literalists of the imaginationMabove insolence and triviality and can present
for inspection, imaginary gardens with real toads in them, shall we have
it.”
—Marianne Moore (18871972)
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)