Noise Mitigation - Roadways

Roadways

Source control in roadway noise has provided little reduction in vehicle noise, except for the development of the hybrid vehicle; nevertheless, hybrid use will need to attain a market share of roughly fifty percent to have a major impact on noise source reduction of city streets. (Highway noise is little affected by automobile type, since those effects are aerodynamic and tyre noise related.) Other contributions to reduction of noise at the source are: improved tire tread designs for trucks in the 1970s, better shielding of diesel stacks in the 1980s, and local vehicle regulation of unmuffled vehicles.

The most fertile areas for roadway noise mitigation are in urban planning decisions, roadway design, noise barrier design, speed control, surface pavement selection and truck restrictions. Speed control is effective since the lowest sound emissions arise from vehicles moving smoothly at 30 to 60 kilometres per hour. Above that range, sound emissions double with each five miles per hour of speed. At the lowest speeds, braking and (engine) acceleration noise dominates. Selection of surface pavement can make a difference of a factor of two in sound levels, for the speed regime above 30 kilometres per hour. Quieter pavements are porous with a negative surface texture and use medium to small aggregates; the loudest pavements have a transversely grooved surface, and/or a positive surface texture and use larger aggregates. Surface friction and roadway safety are important considerations as well for pavement decisions.

When designing new urban freeways or arterials, there are numerous design decisions regarding alignment and roadway geometrics. Use of a computer model to predict future sound levels from line sources has become standard practice since the early 1970s. In this way exposure of sensitive receptors to elevated sound levels can be minimized. An analogous process exists for urban mass transit systems and other rail transportation decisions. Early examples of urban rail systems designed using this technology were: Boston MTA line expansions (1970s), San Francisco Bay Area Rapid Transit System expansion (1981), Houston light rail system (1982), and the Portland, Oregon Beaverton light rail line (1983).

Noise barriers can be applicable for existing or planned surface transportation projects. They are probably the single most effective weapon in retrofitting an existing roadway, and commonly can reduce adjacent land use sound levels by up to ten decibels. A computer model is required to design the barrier since terrain, micrometeorology and other locale specific factors make the endeavor a very complex undertaking. For example, a roadway in cut or strong prevailing winds can produce a setting where atmospheric sound propagation is unfavorable to any noise barrier.

Read more about this topic:  Noise Mitigation