Use in Other Structures
A right Noetherian ring R is, by definition, a Noetherian right R module over itself using multiplication on the right. Likewise a ring is called left Noetherian ring when R is Noetherian considered as a left R module. When R is a commutative ring the left-right adjectives may be dropped, as they are unnecessary. Also, if R is Noetherian on both sides, it is customary to call it Noetherian and not "left and right Noetherian".
The Noetherian condition can also be defined on bimodule structures as well: a Noetherian bimodule is a bimodule whose poset of sub-bimodules satisfies the ascending chain condition. Since a sub-bimodule of an R-S bimodule M is a fortiori a left R-module, if M considered as a left R module were Noetherian, then M is automatically a Noetherian bimodule. It may happen, however, that a bimodule is Noetherian without its left or right structures being Noetherian.
Read more about this topic: Noetherian Module
Famous quotes containing the word structures:
“The American who has been confined, in his own country, to the sight of buildings designed after foreign models, is surprised on entering York Minster or St. Peters at Rome, by the feeling that these structures are imitations also,faint copies of an invisible archetype.”
—Ralph Waldo Emerson (18031882)