Noetherian Module - Use in Other Structures

Use in Other Structures

A right Noetherian ring R is, by definition, a Noetherian right R module over itself using multiplication on the right. Likewise a ring is called left Noetherian ring when R is Noetherian considered as a left R module. When R is a commutative ring the left-right adjectives may be dropped, as they are unnecessary. Also, if R is Noetherian on both sides, it is customary to call it Noetherian and not "left and right Noetherian".

The Noetherian condition can also be defined on bimodule structures as well: a Noetherian bimodule is a bimodule whose poset of sub-bimodules satisfies the ascending chain condition. Since a sub-bimodule of an R-S bimodule M is a fortiori a left R-module, if M considered as a left R module were Noetherian, then M is automatically a Noetherian bimodule. It may happen, however, that a bimodule is Noetherian without its left or right structures being Noetherian.

Read more about this topic:  Noetherian Module

Famous quotes containing the word structures:

    The philosopher believes that the value of his philosophy lies in its totality, in its structure: posterity discovers it in the stones with which he built and with which other structures are subsequently built that are frequently better—and so, in the fact that that structure can be demolished and yet still possess value as material.
    Friedrich Nietzsche (1844–1900)