Nilradical of A Ring

Nilradical Of A Ring

In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements of the ring.

In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways.

Read more about Nilradical Of A Ring:  Commutative Rings, Noncommutative Rings

Famous quotes containing the word ring:

    Time has no divisions to mark its passage, there is never a thunderstorm or blare of trumpets to announce the beginning of a new month or year. Even when a new century begins it is only we mortals who ring bells and fire off pistols.
    Thomas Mann (1875–1955)