Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements of the ring.
In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways.
Read more about Nilradical Of A Ring: Commutative Rings, Noncommutative Rings
Famous quotes containing the word ring:
“Time has no divisions to mark its passage, there is never a thunderstorm or blare of trumpets to announce the beginning of a new month or year. Even when a new century begins it is only we mortals who ring bells and fire off pistols.”
—Thomas Mann (18751955)