Nilpotent Orbit - Poset Structure

Poset Structure

Nilpotent orbits form a partially ordered set: given two nilpotent orbits, O1 is less than or equal to O2 if O1 is contained in the Zariski closure of O2. This poset has a unique minimal element, zero orbit, and unique maximal element, the regular nilpotent orbit, but in general, it is not a graded poset. If the ground field is algebraically closed then the zero orbit is covered by a unique orbit, called the minimal orbit, and the regular orbit covers a unique orbit, called the subregular orbit.

In the case of the special linear group SLn, the nilpotent orbits are parametrized by the partitions of n. By a theorem of Gerstenhaber, the ordering of the orbits corresponds to the dominance order on the partitions of n. Moreover, if G is an isometry group of a bilinear form, i.e. an orthogonal or symplectic subgroup of SLn, then its nilpotent orbits are parametrized by partitions of n satisfying a certain parity condition and the corresponding poset structure is induced by the dominance order on all partitions (this is a nontrivial theorem, due to Gerstenhaber and Hesselink).

Read more about this topic:  Nilpotent Orbit

Famous quotes containing the word structure:

    Vashtar: So it’s finished. A structure to house one man and the greatest treasure of all time.
    Senta: And a structure that will last for all time.
    Vashtar: Only history will tell that.
    Senta: Sire, will he not be remembered?
    Vashtar: Yes, he’ll be remembered. The pyramid’ll keep his memory alive. In that he built better than he knew.
    William Faulkner (1897–1962)