Nilpotent Matrix - Classification

Classification

Consider the n × n shift matrix:

S = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 0
\end{bmatrix}.

This matrix has 1s along the superdiagonal and 0s everywhere else. As a linear transformation, the shift matrix “shifts” the components of a vector one slot to the left:

This matrix is nilpotent with degree n, and is the “canonical” nilpotent matrix.

Specifically, if N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form

 \begin{bmatrix} S_1 & 0 & \ldots & 0 \\ 0 & S_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & S_r
\end{bmatrix}

where each of the blocks S1, S2, ..., Sr is a shift matrix (possibly of different sizes). This theorem is a special case of the Jordan canonical form for matrices.

For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix

\begin{bmatrix} 0 & 1 \\ 0 & 0
\end{bmatrix}.

That is, if N is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b1, b2 such that Nb1 = 0 and Nb2 = b1.

This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)

Read more about this topic:  Nilpotent Matrix