Characterization
For an n × n square matrix N with real (or complex) entries, the following are equivalent:
- N is nilpotent.
- The minimal polynomial for N is λk for some positive integer k ≤ n.
- The characteristic polynomial for N is λn.
- The only (complex) eigenvalue for N is 0.
- tr(Nk) = 0 for all k > 0.
The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities)
This theorem has several consequences, including:
- The degree of an n × n nilpotent matrix is always less than or equal to n. For example, every 2 × 2 nilpotent matrix squares to zero.
- The determinant and trace of a nilpotent matrix are always zero.
- The only nilpotent diagonalizable matrix is the zero matrix.
Read more about this topic: Nilpotent Matrix
Related Phrases
Related Words