Relation To Nilpotent Ideals
The notion of a nil ideal has a deep connection with that of a nilpotent ideal, and in some classes of rings, the two notions coincide. If an ideal is nilpotent, it is of course nil. There are two main barriers for nil ideals to be nilpotent:
- There need not be an upper bound on the exponent required to annihilate elements. Arbitrarily high exponents may be required.
- The product of n nilpotent elements may be nonzero for arbitrarily high n.
Clearly both of these barriers must be avoided for a nil ideal to qualify as nilpotent.
In a right artinian ring, any nil ideal is nilpotent. This is proven by observing that any nil ideal is contained in the Jacobson radical of the ring, and since the Jacobson radical is a nilpotent ideal (due to the artinian hypothesis), the result follows. In fact, this has been generalized to right noetherian rings; the result is known as Levitzky's theorem. A particularly simple proof due to Utumi can be found in (Herstein 1968, Theorem 1.4.5, p. 37).
Read more about this topic: Nil Ideal
Famous quotes containing the words relation to, relation and/or ideals:
“The proper study of mankind is man in his relation to his deity.”
—D.H. (David Herbert)
“There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artists relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artists concern with merely temporary and local disturbances. The song is higher than the struggle.”
—Adrienne Rich (b. 1929)
“But I would emphasize again that social and economic solutions, as such, will not avail to satisfy the aspirations of the people unless they conform with the traditions of our race, deeply grooved in their sentiments through a century and a half of struggle for ideals of life that are rooted in religion and fed from purely spiritual springs.”
—Herbert Hoover (18741964)