Relation To Nilpotent Ideals
The notion of a nil ideal has a deep connection with that of a nilpotent ideal, and in some classes of rings, the two notions coincide. If an ideal is nilpotent, it is of course nil. There are two main barriers for nil ideals to be nilpotent:
- There need not be an upper bound on the exponent required to annihilate elements. Arbitrarily high exponents may be required.
- The product of n nilpotent elements may be nonzero for arbitrarily high n.
Clearly both of these barriers must be avoided for a nil ideal to qualify as nilpotent.
In a right artinian ring, any nil ideal is nilpotent. This is proven by observing that any nil ideal is contained in the Jacobson radical of the ring, and since the Jacobson radical is a nilpotent ideal (due to the artinian hypothesis), the result follows. In fact, this has been generalized to right noetherian rings; the result is known as Levitzky's theorem. A particularly simple proof due to Utumi can be found in (Herstein 1968, Theorem 1.4.5, p. 37).
Read more about this topic: Nil Ideal
Famous quotes containing the words relation to, relation and/or ideals:
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—HonorĂ© De Balzac (17991850)
“There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.”
—Blaise Pascal (16231662)
“You can tell the ideals of a nation by its advertisements.”
—Norman Douglas (18681952)