Nil Ideal - Commutative Rings

Commutative Rings

In a commutative ring, the set of all nilpotent elements forms an ideal known as the nilradical of the ring. Therefore, an ideal of a commutative ring is nil if, and only if, it is a subset of the nilradical; that is, the nilradical is the ideal maximal with respect to the property that each of its elements is nilpotent.

In commutative rings, the nil ideals are more well-understood compared to the case of noncommutative rings. This is primarily because the commutativity assumption ensures that the product of two nilpotent elements is again nilpotent. For instance, if a is a nilpotent element of a commutative ring R, a·R is an ideal that is in fact nil. This is because any element of the principal ideal generated by a is of the form a·r for r in R, and if an = 0, (a·r)n = an·rn = 0. It is not in general true however, that a·R is a nil (one-sided) ideal in a noncommutative ring, even if a is nilpotent.

Read more about this topic:  Nil Ideal

Famous quotes containing the word rings:

    ‘She has got rings on every finger,
    Round one of them she have got three.
    She have gold enough around her middle
    To buy Northumberland that belongs to thee.
    Unknown. Young Beichan (l. 61–64)