Niemeier Lattice - The Neighborhood Graph of The Niemeier Lattices

The Neighborhood Graph of The Niemeier Lattices

If L is an odd unimodular lattice of dimension 8n and M its sublattice of even vectors, then M is contained in exactly 3 unimodular lattices, one of which is L and the other two of which are even. (If L has a norm 1 vector then the two even lattices are isomorphic.) The Kneser neighborhood graph in 8n dimensions has a point for each even lattice, and a line joining two points for each odd 8n dimensional lattice with no norm 1 vectors, where the vertices of each line are the two even lattices associated to the odd lattice. There may be several lines between the same pair of vertices, and there may be lines from a vertex to itself. Kneser proved that this graph is always connected. In 8 dimensions it has one point and no lines, in 16 dimensions it has two points joined by one line, and in 24 dimensions it is the following graph:

Each point represents one of the 24 Niemeier lattices, and the lines joining them represent the 24 dimensional odd unimodular lattices with no norm 1 vectors. (Thick lines represent multiple lines.) The number on the right is the Coxeter number of the Niemeier lattice.

In 32 dimensions the neighborhood graph has more than a billion vertices.

Read more about this topic:  Niemeier Lattice

Famous quotes containing the words neighborhood and/or graph:

    I was born and raised in a neighborhood called Noah’s Ark. If you didn’t travel in pairs, you just didn’t travel.
    Stanley Shapiro (1925–1990)

    In this Journal, my pen is a delicate needle point, tracing out a graph of temperament so as to show its daily fluctuations: grave and gay, up and down, lamentation and revelry, self-love and self-disgust. You get here all my thoughts and opinions, always irresponsible and often contradictory or mutually exclusive, all my moods and vapours, all the varying reactions to environment of this jelly which is I.
    W.N.P. Barbellion (1889–1919)