Newton's Theorem of Revolving Orbits - Closed Orbits and Inverse-cube Central Forces

Closed Orbits and Inverse-cube Central Forces

Two types of central forces—those that increase linearly with distance, F = Cr, such as Hooke's law, and inverse-square forces, F = C/r2, such as Newton's law of universal gravitation and Coulomb's law—have a very unusual property. A particle moving under either type of force always returns to its starting place with its initial velocity, provided that it lacks sufficient energy to move out to infinity. In other words, the path of a bound particle is always closed and its motion repeats indefinitely, no matter what its initial position or velocity. As shown by Bertrand's theorem, this property is not true for other types of forces; in general, a particle will not return to its starting point with the same velocity.

However, Newton's theorem shows that an inverse-cubic force may be applied to a particle moving under a linear or inverse-square force such that its orbit remains closed, provided that k equals a rational number. (A number is called "rational" if it can be written as a fraction m/n, where m and n are integers.) In such cases, the addition of the inverse-cubic force causes the particle to complete m rotations about the center of force in the same time that the original particle completes n rotations. This method for producing closed orbits does not violate Bertrand's theorem, because the added inverse-cubic force depends on the initial velocity of the particle.

Harmonic and subharmonic orbits are special types of such closed orbits. A closed trajectory is called a harmonic orbit if k is an integer, i.e., if n = 1 in the formula k = m/n. For example, if k = 3 (green planet in Figures 1 and 4, green orbit in Figure 9), the resulting orbit is the third harmonic of the original orbit. Conversely, the closed trajectory is called a subharmonic orbit if k is the inverse of an integer, i.e., if m = 1 in the formula k = m/n. For example, if k = 1/3 (green planet in Figure 5, green orbit in Figure 10), the resulting orbit is called the third subharmonic of the original orbit. Although such orbits are unlikely to occur in nature, they are helpful for illustrating Newton's theorem.

Read more about this topic:  Newton's Theorem Of Revolving Orbits

Famous quotes containing the words central forces, closed, orbits, central and/or forces:

    For us necessity is not as of old an image without us, with whom we can do warfare; it is a magic web woven through and through us, like that magnetic system of which modern science speaks, penetrating us with a network subtler than our subtlest nerves, yet bearing in it the central forces of the world.
    Walter Pater (1839–1894)

    A closed mouth catches no flies.
    Miguel De Cervantes (1547–1616)

    To me, however, the question of the times resolved itself into a practical question of the conduct of life. How shall I live? We are incompetent to solve the times. Our geometry cannot span the huge orbits of the prevailing ideas, behold their return, and reconcile their opposition. We can only obey our own polarity.
    Ralph Waldo Emerson (1803–1882)

    There has never been in history another such culture as the Western civilization M a culture which has practiced the belief that the physical and social environment of man is subject to rational manipulation and that history is subject to the will and action of man; whereas central to the traditional cultures of the rivals of Western civilization, those of Africa and Asia, is a belief that it is environment that dominates man.
    Ishmael Reed (b. 1938)

    I don’t think that a leader can control to any great extent his destiny. Very seldom can he step in and change the situation if the forces of history are running in another direction.
    Richard M. Nixon (1913–1995)