Neutron Spin Echo - What IT Can Measure

What It Can Measure

In soft matter research the structure of macromolecular objects is often investigated by small angle neutron scattering, SANS. The exchange of hydrogen with deuterium in some of the molecules creates scattering contrast between even equal chemical species. The SANS diffraction pattern—if interpreted in real space—corresponds to a snapshot picture of the molecular arrangement. Neutron spin echo instruments can analyze the inelastic broadening of the SANS intensity and thereby analyze the motion of the macromolecular objects. A coarse analogy would be a photo with a certain opening time instead of the SANS like snapshot. The opening time corresponds to the Fourier time which depends on the setting of the NSE spectrometer, it is proportional to the magnetic field (integral) and to the third power of the neutron wavelength. Values up to several hundreds of nanoseconds are available. Note that the spatial resolution of the scattering experiment is in the nanometer range, which means that a time range of e.g. 100 ns corresponds to effective molecular motion velocities of 1 nm/100 ns = 1 cm/s. This may be compared to the typical neutron velocity of 200..1000 m/s used in these type of experiments.

Read more about this topic:  Neutron Spin Echo

Famous quotes containing the word measure:

    The measure of a master is his success in bringing all men round to his opinion twenty years later.
    Ralph Waldo Emerson (1803–1882)