Neuronal Tuning - Visually Tuned System

Visually Tuned System

Accepted neuronal tuning models suggest that neurons respond to different degrees based on the similarity between the optimal stimulus of the neuron and the given stimulus. The first major evidence of neuronal tuning in the visual system was provided by Hubel and Wiesel in 1959. They discovered that oriented slits of light were the most effective stimuli for striate cortex “simple cell” neurons. Other neurons, “complex cells," responded best to lines of a certain orientation moving in a specific direction. Overall, the V1 neurons were found to be selectively tuned to a certain orientations, sizes, positions, and forms. Hubel and Wiesel won the Nobel Prize in Physiology or Medicine in 1981 for their discoveries concerning information processing in the visual system.

While these simple cells in V1 respond to oriented bars through small receptive fields, the optimal visual stimulus becomes increasing complex as one moves toward the anterior of the brain. Neurons in area V4 are selectively tuned to different wavelengths, hues, and saturations of color. The middle temporal or area V5 is specifically tuned to the speed and direction of moving stimuli. At the apex of the ventral stream called the inferotemporal cortex, neurons became tuned to complex stimuli, such as faces. The specific tuning of intermediate neurons in the ventral stream is less clear, because the range of form variety that can be utilized for probing is nearly infinite.

In the anterior part of the ventral stream, various regions appear to be tuned selectively to identify body parts (extrastriate body area), faces (fusiform face area), moving bodies (posterior superior temporal sulcus), or even scenes (parahippocampal place area). Neuronal tuning in these areas requires fine discrimination among complex patterns in each relevant category for object recognition. Recent findings suggest that this fine discrimination is a function of expertise and the individual level of categorization with stimuli. Specifically, work has been done by Gauthier et al (2001) to show fusiform face area (FFA) activation for birds in bird experts and cars in car experts when compared to the opposing stimuli. Gauthier et al (2002) also utilized a new class of objects called Greebles and trained people to recognize them at individual levels. After training, the FFA was tuned to distinguish between this class of objects as well as faces. Curran et al (2002) similarly trained people in a less structured class of objects called "blobs" and showed FFA selective activation for them. Overall, neurons can be tuned selectively discriminate between certain sets of stimuli that are experienced regularly in the world.

Read more about this topic:  Neuronal Tuning

Famous quotes containing the words tuned and/or system:

    The sky above the port was the color of television, tuned to a dead channel.
    William Gibson (b. 1948)

    In a universe that is all gradations of matter, from gross to fine to finer, so that we end up with everything we are composed of in a lattice, a grid, a mesh, a mist, where particles or movements so small we cannot observe them are held in a strict and accurate web, that is nevertheless nonexistent to the eyes we use for ordinary living—in this system of fine and finer, where then is the substance of a thought?
    Doris Lessing (b. 1919)