Net (mathematics) - Limit Superior

Limit Superior

Limit superior and limit inferior of a net of real numbers can be defined in a similar manner as for sequences. Some authors work even with more general structures than the real line, like complete lattices.

For a net we put

Limit superior of a net of real numbers has many properties analogous to the case of sequences, e.g.

where equality holds whenever one of the nets is convergent.

Read more about this topic:  Net (mathematics)

Famous quotes containing the words limit and/or superior:

    Moreover, the universe as a whole is infinite, for whatever is limited has an outermost edge to limit it, and such an edge is defined by something beyond. Since the universe has no edge, it has no limit; and since it lacks a limit, it is infinite and unbounded. Moreover, the universe is infinite both in the number of its atoms and in the extent of its void.
    Epicurus (c. 341–271 B.C.)

    Men hear gladly of the power of blood or race. Every body likes to know that his advantages cannot be attributed to air, soil, sea, or to local wealth, as mines and quarries, nor to laws and traditions, nor to fortune, but to superior brain, as it makes the praise more personal to him.
    Ralph Waldo Emerson (1803–1882)