Neotyphodium - Bioactive Compounds

Bioactive Compounds

Many Neotyphodium endophytes produce a diverse range of natural product compounds with biological activities against a broad range of herbivores. Ergoline alkaloids (which are ergot alkaloids, named after the ergot fungus, Claviceps purpurea, a close relative of the epichloae) are characterized by a ring system derived from 4-prenyl tryptophan. Among the most abundant ergot alkaloids in epichloƫ-symbiotic grasses is ergovaline, comprising an ergoline moiety attached to a bicyclic tripeptide containing the amino acids -proline, -alanine, and -valine. Key genes and enzymes for ergot alkaloid biosynthesis have been identified in epichloae and include dmaW, encoding dimethylallyl-tryptophan synthase and lpsA, a non-ribosomal peptide synthetase.

Another group of epichloƫ alkaloids are the indole-diterpenoids, such as lolitrem B, which are produced from the activity of several enzymes, including prenyltransferases and various monooxygenases. Both the ergoline and indole-diterpenoid alkaloids have biological activity against mammalian herbivores, and also activity against some insects. Peramine is a pyrrolopyrazine alkaloid thought to be biosynthesized from the guanidinium-group-containing amino acid -arginine, and pyrrolidine-5-carboxylate, a precursor of -proline, and is an insect-feeding deterrent. The loline alkaloids are 1-aminopyrrolizidines with an oxygen atom linking bridgehead carbons 2 and 7, and are biosynthesized from the amino acids -proline and -homoserine. The lolines have insecticidal and insect-deterrent activities comparable to nicotine. Loline accumulation is strongly induced in young growing tissues or by damage to the plant-fungus symbiotum. Many, but not all, epichloae produce up to three classes of these alkaloids in various combinations and amounts.

Read more about this topic:  Neotyphodium

Famous quotes containing the word compounds:

    We can come up with a working definition of life, which is what we did for the Viking mission to Mars. We said we could think in terms of a large molecule made up of carbon compounds that can replicate, or make copies of itself, and metabolize food and energy. So that’s the thought: macrocolecule, metabolism, replication.
    Cyril Ponnamperuma (b. 1923)